Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.01 vteřin. 
Adaptive parameterization for Aerodynamic Shape Optimization in Aeronautical Applications
Hradil, Jiří ; Rudolf, Pavel (oponent) ; Růžička, Pavel (oponent) ; Píštěk, Antonín (vedoucí práce)
The goal of this doctoral thesis is to analyze and develop parameterization algorithms for 2D and 3D shape optimization in the context of industrial aircraft aerodynamic design based on simulations with CFD. Aerodynamic shape optimization is an efficient tool that aims at reducing the cost of the process of aircraft design. A tool that is based on automatization of the search for the optimum shape. Key part of successful aerodynamic shape optimization is the use of appropriate parameterization method, a method that should guarantee the possibility of reaching optimum shape. The parameterization methods used in aerodynamic shape optimizations are still not ready for complex industrial applications, which are present on modern passenger aircrafts with swept cranked wings with winglets and engine pylons, fuselage-wing interactions etc. So there is a need for general parameterization method that applies on wide variety of different geometries.The Free-Form Deformation (FFD[1]) parameterization can, thanks to its geometry handling qualities, be the answer to this need. Adaptive parameterization should automatically modify parameterization grid (lattice) to get appropriate lattice in regions of interest. Such that will allow sufficient control of deformations of the object with respect to reaching optimum shape and fulfilling optimization constraints. First application is in the surface deformation. The other proposed goal is development of the FFD parameterization that can do both surface deformations and CFD mesh deformations, while enabling large object deformations and preserving the level of mesh quality during the process.
Adaptive parameterization for Aerodynamic Shape Optimization in Aeronautical Applications
Hradil, Jiří ; Rudolf, Pavel (oponent) ; Růžička, Pavel (oponent) ; Píštěk, Antonín (vedoucí práce)
The goal of this doctoral thesis is to analyze and develop parameterization algorithms for 2D and 3D shape optimization in the context of industrial aircraft aerodynamic design based on simulations with CFD. Aerodynamic shape optimization is an efficient tool that aims at reducing the cost of the process of aircraft design. A tool that is based on automatization of the search for the optimum shape. Key part of successful aerodynamic shape optimization is the use of appropriate parameterization method, a method that should guarantee the possibility of reaching optimum shape. The parameterization methods used in aerodynamic shape optimizations are still not ready for complex industrial applications, which are present on modern passenger aircrafts with swept cranked wings with winglets and engine pylons, fuselage-wing interactions etc. So there is a need for general parameterization method that applies on wide variety of different geometries.The Free-Form Deformation (FFD[1]) parameterization can, thanks to its geometry handling qualities, be the answer to this need. Adaptive parameterization should automatically modify parameterization grid (lattice) to get appropriate lattice in regions of interest. Such that will allow sufficient control of deformations of the object with respect to reaching optimum shape and fulfilling optimization constraints. First application is in the surface deformation. The other proposed goal is development of the FFD parameterization that can do both surface deformations and CFD mesh deformations, while enabling large object deformations and preserving the level of mesh quality during the process.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.